An LSTM Architecture for Phonotactically-Informed Word Segmentation

Sara Ng, Dept. of Linguistics

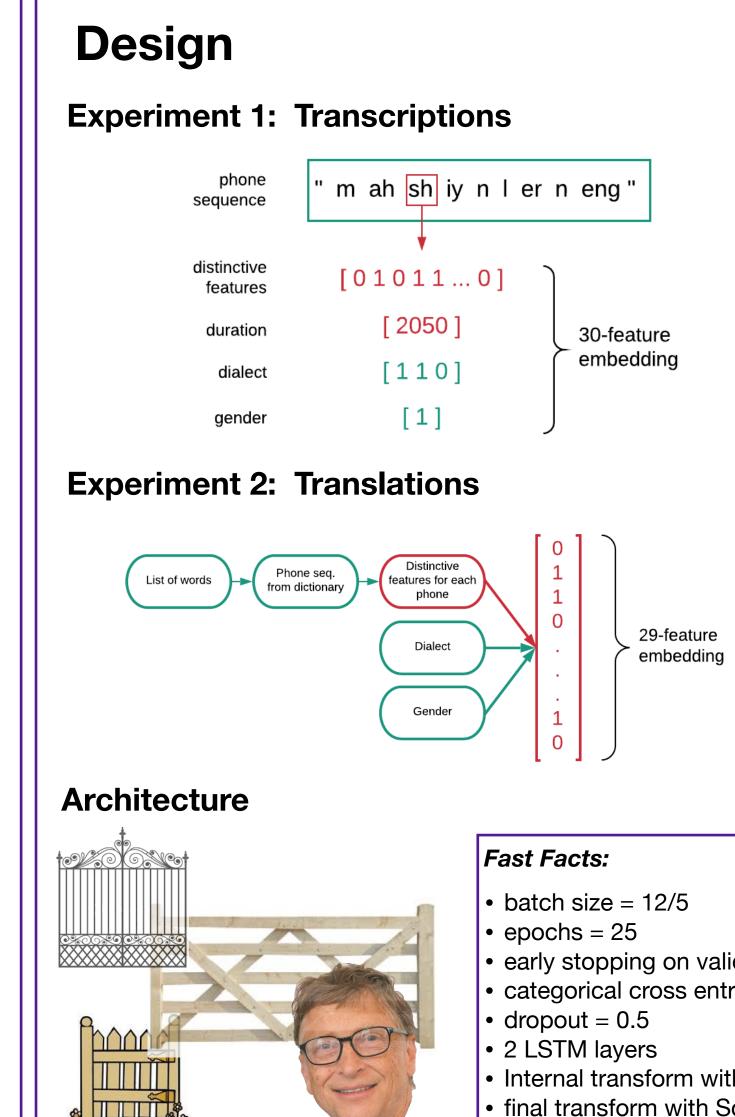
Idea: *Phonotactics,* the way that sounds interact with one another, inform word boundaries

> Goal: Given a phone, determine its **place** in the word

Motivation

- Experiments show that humans don't learn boundaries statistically!
- Productive phonotactics have specific rules at word boundaries

Data


	Sentences	Speakers	Phones (transcribed)	Phones (translated)
Train	3,696	463	134,627	121,190
Test	1,344	168	48,628	43,981

TIMIT (LDC93S1) - sentences spoken in 7 dialects of American English, meant to illustrate phonological diversity (1993)

Each elicitation has:

- human phonetic transcription
- list of spoken words 2
- information about dialect & gender 3
- durations of phones & words 4

The corpus has its own pronouncing dictionary

200

- early stopping on valid loss
- categorical cross entropy

- Internal transform with ReLU
- final transform with SoftMax

Results (translated/translated)

		Precision	Recall	F1
	Train	0.966 /0.884	0.964 /0.824	0.965/ 0.853
	Valid	0.943 /0.889	0.940 /0.825	0.941 /0.856
	Test	0.888 /0.888	0.883 /0.824	0.885 /0.855

Summary

- performance comparable to combined statistical/ linguistic heuristics on translations
- poor performance on transcribed data possibly paucity of features?
- robust within transcription system
- language-specific embeddings reduce dimensionality, but can be modified to accept multilingual features

Next

- go from the signal directly
- look at a more interesting language for which dictionary is available (i.e Arabic)
- use as measure of grained-ness of transcription

References

Deng Cai and Hai Zhao. Neural word segmentation, learning, for Chinese, arXiv, preprint, arXiv:1606.04300, 2016

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu, and Xuanjing Huang. Long short-term memory neural networks for Chinese word segmentation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1197-1206, 2015.

Margaret M Fleck. Lexicalized phonotactic word segmentation. In Proceedings of ACL-09: HLT, pages 130-138, 2008.

Timothy Gambell and Charles Yang. Word Segmentation: Quick but not dirty. Unpublished manuscript.

John S Garofolo, Lori F Lamel, William M Fisher, Jonathan G Fiscus, and David S Pallett. DARPA TIMIT acoustic-phonetic continuous speech corpus CD-ROM. NIST speech disc 1-1.1. NASA STI/Recon technical report n, 93, 1993. Elizabeth K Johnson and Peter W Jusczyk. Word segmentation by 8-month-olds: When speech cues count more than statistics. Journal of memory and language, 44(4):548-567, 2001.

Yoshiaki Kitagawa and Mamoru Komachi. Long short-term memory for Japanese word segmentation. arXiv preprint, arXiv:1709.08011, 2017.

Fuchun Peng and Dale Schuurmans. A hierarchical EM approach to word segmentation. In NLPRS, pages 475-480, 2001.

