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Speech technology is a ubiquitous part of the modern world, from the voice-enabled assistants

in smartphones to bespoke tools used by language researchers. Technological advances and

the curation of large speech datasets have enabled these systems to identify words with

remarkable quality. However, the black-box nature of large commercial speech understanding

systems brings into question the extent to which they can take advantage of cues from

prosody.

Prosody has great potential as an untapped source of linguistic information for speech

understanding that is not surfaced in other aspects of language. Previous work has shown

that prosodic information can be exploited computationally to resolve ambiguity for linguistic

structures in computational models, and to perform tasks which are considered prosodically

significant, such as sarcasm detection. However, computational systems do not benefit from

the same social and conversational context that humans have in processing this kind of

communication, making such tasks more challenging and further motivating the careful study

of prosodic input.

This work investigates the hypothesis that explicit encoding of acoustic-prosodic features

is a benefit to speech understanding technology. From the domain of punctuation prediction



in automatic speech recognition, I show that adding acoustic-prosodic measures can improve

the performance of punctuation prediction models for speech transcripts compared to a

system that uses only the word sequence. I provide a potential use case for prosodic modeling

in the domain of speech entrainment. Finally, I show how computational methods can be

used to understand human behavior in prosodically marked speech within the domains of

speech timing and regions of presumed hyper-articulation.

This work bridges the gap between linguistic questions about prosody, and computational

questions about the use of or need for linguistically-motivated acoustic features. Understand-

ing how prosody influences the quality of speech understanding systems is vital in enhancing

their utility across various domains and for diverse speakers. The synthesis of the these

research strands provides a bird’s eye view of the methodologies and challenges that can be

involved in computational processing of prosody.
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Chapter 1

INTRODUCTION

Language exists in many forms, from face-to-face communication to interfacing with

automated customer service agents through text; and humans are capable of adapting their

language to suit various modalities and language environments. However, at the core of all

produced language is a need to transmit information between entities. Prosody, the “study

of the tune and rhythm of speech and how these features contribute to meaning” [1], is

often used to transmit information that cannot be derived from words alone. For example,

when a speaker is expressing feelings of anger they may explicitly express their emotions via

the words they choose to say, and amplify and reinforce their ire through a harsh tone of

voice. Prosodic variation also allows speakers to create meaning that alters the semantic

interpretation of the words themselves, for instance in expressions of sarcasm.

Despite its many utilities in conveying information beyond the basic word choice and

grammar of speech, prosody is less-studied than other sub-fields of linguistics. There are

many practical reasons for this. Collecting empirical data is much more difficult in the audio

modality than in text, but prosody primarily manifests in spoken language. What’s more,

prosodic strategies can vary wildly from person to person. For example, sociolinguistic factors

such as gender [2], ethnic identity [3], other social identities [4], and speech environment or

register [5, 6] are all factors that influence which prosodic strategies are used to create a

given effect. Prosodic features are also not consistent between languages [7] or even between

dialects [e.g., 2, 8, 9]. And while speech data is large and available, methods for quantizing

prosodic behaviors into interpretable units do not have consensus in the field.

However, there is pioneering experimental work showing the many uses of prosody in

natural language. Within pragmatics, the discourse behavior of stance-taking (investigated
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in Chapters 5 and 6) has been shown to manifest in the acoustic signal as prosodic variation

[10]. Systems for prosodic annotation, based on the Tone and Break Indices framework [11]

as well as other cross-linguistic systems of annotation [e.g., 12, 13] are continuously being

developed for understudied language varieties.

Fluency in prosodic behavior is required by both humans and machines. In human-human

interactions, we are able to process the subtle prosodic cues produced by our interlocuters,

and use these cues to process and understand what is being conveyed. In turn, as speakers

we naturally make use of prosodic changes to convey meaning to our interlocutors, with the

subconscious expectation that they will correctly interpret meaning from our modifications

to the acoustic signal.

For machines, naturalistic prosody is a necessary early goal post in producing normal-

sounding speech. For example, text-to-speech systems such as Amazon’s Alexa or Google

Assistant can make use of Speech Synthesis Markup Language, a programmatic method

for encoding prosodic templates onto text [14]. Other computer interfaces may process the

prosody of input audio in order to determine when to break transcriptions into smaller

units [15], diarize text [16], or disambiguate between sentences types (e.g., questions versus

declaratives for languages such as French where the surface word order can be ambiguous)

[17].

While prosody is well-studied in applications such as speech synthesis, it is less explored

for applications in speech understanding. A challenge specific to the study of prosody for

speech understanding systems is that there is not a consensus on how to classify prosodic

phenomena. Compared to a field such as syntax, where units and labels tend to be discrete,

clearly defined, and typologically consistent, prosody is noisy and difficult to discretize.

Annotation standards can vary based on the language or dialect, and are often focused on

specific phenomena. Another challenge in researching prosody within the computational

understanding space is the ideological divide between linguistic perspectives on prosody and

its application in technology. Linguists tend to focus on specific speech phenomena and the

local acoustic changes that convey meaning and emotion. However, when audio is modeled
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computationally without hand-selecting of features, there is no way for practitioners to embed

linguistic knowledge of prosody into the learning process. Bridging this divide is crucial for

achieving the dual goals of understanding prosody’s role in natural speech and developing

computational methods to accurately represent these mechanisms.

The work I present in this thesis comprises two complementary goals. First, I seek to use

computational methods to understand prosody from the human perspective. I empirically

analyze large corpus speech data in order to understand human prosodic behavior at scale.

Second, I investigate how knowledge of prosody can improve the performance of modern

speech understanding technology, and show ways in which the use of prosody for speech

technology is not being exploited to its fullest potential.

Specifically for improving speech understanding technology, I show that acoustic-prosodic

features can improve the prediction of punctuation for transcribed text. I also explore a

method for modeling the entrainment of prosodic features between interlocutors, and discuss

the limitations of such an approach. From the perspective of understanding human behavior,

I show that speech timing is influenced by stance-taking behaviors in discourse, and further

that its effect on hyper- and hypo-articulation interacts with the informational load of speech.

This document is organized as follows: In Chapter 2, I provide a theoretical overview of

prosody and related speech concepts. In Chapters 3 and 4, I show two experiments using

explicit encoding of prosody to improve performance on natural language processing tasks.

Finally, in Chapters 5 and 6, I empirically demonstrate how communicative needs can alter

the flow of speech via changes in time and articulation, respectively.
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Chapter 2

BACKGROUND

Before discussing the role of speech prosody in language technology, a theoretical under-

standing of prosody must be established. Further, it is beneficial to review what is known

about the function and manifestation of prosody in natural speech. In the following sec-

tions, I present an overview of the linguistic theory of prosody. Section 2.1 overviews the

theoretical conceptions of prosody in linguistic research, including systems for measuring

and categorizing prosodic behavior, functions of prosody in discourse, and cross-linguistic

variation. In Section 2.2, I describe some of the current common uses of prosody in speech

technology. In Section 2.3, I will introduce the notions of spontaneous and conversational

speech, and discuss why this type of language is ideal for the study of prosody. Section

2.4 outlines the notion of stance-taking, a prosodically-encoded discourse function which I

explore in Chapters 5 and 6. Finally, Section 2.5 describes the corpora which are used in

various experiments in Chapters 3 to 6.

2.1 Foundations of Speech Prosody

In the web series of introductory linguistics topics from Macquarie University, prosody is

broadly defined as “the study of the tune and rhythm of speech and how these features

contribute to meaning” [1]. In their textbook for Natural Language Processing (NLP) prac-

titioners, Jurafsky & Martin define prosody as “the study of the intonational and rhythmic

aspects of language, and in particular the use of F0, energy, and duration to convey prag-

matic, affective, or conversation-interactional meanings” [18, ch. H p. 7]. For the purposes of

this dissertation, I consider English prosody to be any suprasegmental changes to the speech

signal, especially those produced via acoustic perturbations from the norm, that contribute
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new meaning or reinforce the intended meaning of language. This definition is purposefully

broad: prosody must not be only acoustically defined, lest it exclude written or signed lan-

guages (though the latter is not explored in this work). It must also not rely on specific

acoustic cues; the acoustic-prosodic strategies I’ve observed are not uniform across tasks or

languages. And finally, there must be a purpose behind changes to the signal [19].

2.1.1 Prosody as Suprasegmental Phonology

Consensus views of prosody can be separated into three generalizations: 1) that prosody is

a part of the linguistic signal separate from other linguistic levels such as morphemes and

syntax, 2) that prosody contributes to the meaning or purpose of speech, and 3) that prosody

manifests as observable patterns in the acoustic speech signal.

The Autosegmental framework of phonology organizes speech sounds into what are seen

as the smallest discrete units of language, called segments, and describes features that can

be associated to the segments [20]. For research agendas that follow the autosegmental view,

prosody must be described relative to the segment. In their discussion of the wide range of

definitions for prosody, Cutler and Ladd assert that the Autosegmentalist views prosody as

“any phenomena that involve phonological organization at levels above the segment” ([19,

p. 2]). In this view, prosodic phenomena are a unique metrical system above the segment,

which may fortuitously appear to apply to single segments but more often apply to larger

prosody-bearing units [21].

From a practitioner perspective, the components of prosody may be more related to

the labeling scheme or acoustic measures employed. The most common labelling scheme

for prosody across languages is the Tone and Break Indices System (ToBI) [11], which en-

ables annotators to describe melodic contours and breaks at multiple levels of granularity

using discrete labels. Annotation standards vary from language to language and even be-

tween varieties of language [7], however the notation remains more-or-less consistent across

languages.
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2.1.2 Acoustic Correlates of Prosody

The most commonly attributed acoustic correlates of prosody are fundamental frequency,

duration, and intensity [19, p. 1]. These measurements are often described as local changes

to general contours, for example a peak or trough in an intensity contour, unusually long

syllable duration, or a rising pitch contour in the final words of a sentence. Measurements

can be associated to any linguistic level: phones, syllables, words, intonational phrases, etc.

Other acoustic correlates of prosody have been observed as well. For example, changes in

voice quality are observed in regions of prosodic interest. Davidson [22] notes that creaky

voicing can be used to establish sentential prosodic boundaries in English, Mandarin, and

Finnish.

2.1.3 The Function of Prosody in Discourse

One well-known discourse function of prosody in English is in the creation of focus con-

structions. A focus in discourse is a region of semantic importance that introduces new or

contrasting information, in other words “the nonpresupposed part of the sentence” [23, p.

1]. Example (1) shows an example where on the topic of what a cat eats for breakfast, the

word duck is emphasized to identify a variety of broth. One possible context for this word

to be focused is when the interlocutor fails to hear a part of a previous utterance, and so

it must be re-introduced to the discourse. Another common type of focus construction is

contrast focus, where a constituent is emphasized in particular to contrast it against some

other conflicting constituent [24]. Example (2) shows the word ‘salmon’ is contrasted as a

correction for the work ‘duck,’ which was previously introduced to the discourse.

(1) The cat eats kibble and DUCK broth for breakfast.

(2) No, the cat wants SALMON broth, not duck broth!

Notice that in (1) in particular, the fact that the word duck is being focused cannot

be deduced from the words or word order alone; something about the pronunciation of the

phrase must be changed.
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2.1.4 Cross-linguistic Variation

In general, prosody is used for managing turn-taking, signaling discourse structure, and facil-

itating mutual understanding. Through prosodic cues, speakers can indicate the boundaries

of their utterances [25, 26], as well as highlight key points and express emphasis or surprise

[8]. Moreover, prosody enables listeners to resolve ambiguous lower-level speech cues [27],

detect sarcasm or irony [28], and infer the speaker’s emotional state or intentions. The abil-

ity to interpret and respond to these prosodic cues is a fundamental aspect of natural human

conversation.

The English language has a particular poverty of distinguishing prosodic phenomena when

compared to other languages. Some prosodic phenomena are fossilized to specific lexemes,

for instance the case of negative ‘yeah’ [29]. Like other languages, though, English prosody

is still a valuable too for speakers and listeners in spontaneous conversation. For example,

[30] found differing distributions of speech timing, loudness and measures of “vocal intensity”

between speakers who were judged by interlocutors to be bad and good conversationalists.

However other languages more robustly use prosodic information as a primary information

stream of both semantic and pragmatic information.

One obvious typological distinction influencing prosody is the dichotomy of tonal and non-

tonal languages. In tonal languages, pitch patterns are associated with lexemes. Variations

in these pitch patterns distinguish word forms from one another. For example, in Toisan

Chinese, tone is used to distinguish word forms such that words may have identical phone

sequences but vary in tone and have very different meanings. This is shown in Examples

(3–7). The numerals at the end of each pronunciation indicate the tonal pattern.

(3) 凉
liaN22
‘cool’

(4) 领
liaN33
‘to receive’

(5) 两
liaN55
‘tael’ (50g)

(6) 领
liaN21
‘collar’

(7) 亮
liaN32
‘bright’ [31]

The distinction between tonal and non-tonal systems of language is important for assessing

other uses of pitch for suprasegmental prosody. Within tonal languages of the same variety,
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different prosodic strategies may be used to convey the same pragmatic information [32, 33].

In addition, languages within the same tonal category may include or exclude suprasegmental

prosodic distinctions; for example, Mandarin Chinese encodes stress, while Cantonese does

not [7, p. 431].

Languages also vary in what structure of language forms the metrical unit; this is known

as language isochrony [34]. Languages can be divided into syllable-, stress-, and mora-timed

groups. Syllable-timed languages include Italian and Spanish, while English and many of

Germanic languages are stress-timed [7, p. 432]. The mora-timed category was created ex-

pressly for the analysis of Japanese [35, p. 252]. The distinction between metrical timing

structures can be subtle, and the existence of such discrete categories is controversial [36].

However, they influence prosodic features such as the degree of vowel lengthening that can

occur [7, p. 432]. Importantly, the different timing structures of languages makes it dubi-

ous that observed prosodic norms will hold between languages with very different metrical

structures.

2.2 Prosody as Input to Speech Technology

Prosodic information has been widely used in speech synthesis applications. In Wavenet, a

popular generative speech model, speech synthesis functions are learned from log pitch and

phone duration [37]. Another domain where prosodic information is actively used is for creat-

ing speaker personas. Researchers used prosodic representations in [38] to create synthesized

speech with learned patterns of simple emotion categories, and found that these emotional

personas were preferred over systems that did not learn the affective prosody. An exam-

ple of explicit prosodic encoding improving speech understanding comes from [39], where

researchers used transformers with a prosody encoder to improve classification performance

on tasks where affective prosody is particularly useful.

Explicit prosodic features have been used in a variety of natural language processing tasks,

such as constituency parsing [e.g., 40], identification of stance-taking [e.g., 41], punctuation

prediction [e.g., 42], and dialogue act prediction [e.g., 43]. A variety of approaches have
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been used previously to create models of prosody in conversation. For example, [44] used an

LSTM model (as do we; see Section 4.3.3) trained on text-based measures to jointly predict

pitch and phone duration. Within the scope of creating realistic prosody for speech synthesis,

[45] used contextual word embeddings to create a prosody predictor for novel speech. Based

on subjective judgments of synthesized speech using their predictor, they outperformed a

comparable system which had access to oracle prosodic encoding, however there is still a gap

between their model’s rating and the raters’ ranking of natural prosody samples.

End-to-end models of speech are thought to implicitly learn prosodic representations.

Some research has attempted to quantify the relationship between prosodic cues and end-

to-end system performance. For example, [46] probed the self-attention layers of an emotion

recognition system. They found that the impact of fine-tuning on attention to voice qual-

ity and pitch features was greater for higher layers. Other work has focused on hybrid

approaches, where systems can be front-loaded with learned prosodic representations [e.g.,

47].

Prosodic cues convey meaning, manage turn-taking, and express emotions. Recognizing

the significance of prosody, computational models have incorporated prosodic features to

improve performance in various NLP tasks, including speech recognition, sentiment analysis,

speaker identification, and dialogue systems. These cues are an underutilized asset to speech

processing and understanding tasks.

2.3 Spontaneous and Conversational Speech

One important distinction for studies of prosody is the register and environment in which

speech occurs. Spontaneous, conversational speech is a context where prosodic information

carries more information than in other forms of speech. Spontaneous speech is unprompted

speech where speech planning is entirely the responsibility of the speaker and no prompts

such as word lists or prose are provided. Conversational speech occurs between more than

one speaker. Compared to more formal registers of speech such as read speech or word list

elicitation, spontaneous, conversational speech contains richer linguistic information. This



10

includes the social context and dynamics of an interlocutor or interlocutors, casual registers

which may have more acoustic reduction [48], and non-standard forms of language. In the

context of prosodic research, conversational speech exposes more pragmatic communication

needs than other forms of speech, making it ideal for study. There can be challenges to

performing empirical research on spontaneous, conversational data: data collection at scale

is difficult and may induce artificial biases versus truly naturalistic data. Data can also

be much noisier, and target phenomenon may not always be present. Finally, the nature of

conversational data introduces many possible confounds which can be difficult to account for,

such as visual cues, speaker and interlocutor demographics, and other interpersonal context

which may not be available to the researcher.

2.4 Stance

Stance-taking is a pragmatic information-sharing strategy which speakers use to disclose “at-

titudes and opinions about the topic of discussion” [49, p. 1]. In conversation, stance-taking

occurs when speakers convey information about their internal state to their interlocutors,

and these internal states can then adapt within the conversation [50]. For example, stance-

taking may be evaluative, i.e., assigning an attribute such as pretty or ugly, or aligning, i.e.,

showing that speakers agree with one another [51]. Thus in order to correctly process stance-

taking, information about the speaker state, interlocutor state, and the linguistic object of

stance must be interpreted.

Stance-taking acts can be categorized into meaningful groups based on their goal and

intensity. In this work, I follow the coarse dichotomy defined in [41, 49, 52]. In this system,

the object or goal or stance-taking is not considered. However, stance acts are grouped

according to their strength and polarity. Strength refers to the fervor of the attitude or

opinion being expressed. A purely informative declaration such as “The cat is sitting on her

pillow” has no strength, as there is nothing in particular about the speaker’s state evident in

the text. In contrast, “I adore listening to the cat purr” has much stronger stance, making

obvious the evaluative opinion of the speaker towards the object (cat purring). Stance
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polarity exists on a categorical continuum with Negative, Neutral, and Positive variants,

and refers to the sentiment of the stance being expressed. Table 2.4 provides examples of

the combinations of stance strength and polarity.

Table 2.1: Examples of stance-taking in ATAROS by strength and polarity.

Stance →
Polarity ↓ None Weak Moderate Strong

Negative n/a
I don’t like cut-
ting things in
general

I would say no no
no keep it

I would definitely
not wanna get rid
of the poetry

Neutral

I’m won-
dering if
it’s like the
thing

That could
bring in big
bucks

People can still get
taxis in the most
important areas
anyway

They’re getting
run out by like all
these ride share
programs

Positive n/a Let’s just leave
it there for now

You’re right I
didn’t think about
it that way

You could just
drink water that’s
what I would cut
too

2.5 Datasets

2.5.1 ATAROS

Many of the experiments in this work rely on the Automatic Tagging and Recognition of

Stance (ATAROS) dataset,1 a collection of task-based dyadic conversations created to elicit

stance-taking speech behaviors [49]. Adult native English speakers from the Pacific North-

west Region of the United States (Washington, Oregon, and Idaho) were paired in age-

matched dyads [49, p. 22] and tasked with completing collaborative activities.

Previous work using this dataset has quantitatively shown that dynamic phonetic and

prosodic changes occur with stance-taking behaviors [49, pp. 57-66]. This data has also been

1https://depts.washington.edu/phonlab/projects/ataros.php
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used to create computational predictors of stance from phonetic and lexical information

[41, 53].

There are six tasks completed by each dyad, with the third and sixth tasks being targets of

stance elicitation. The third task (the inventory task) was designed to be a low motivator of

speaker engagement, and thus elicit examples of weak stance-taking. In this task, speakers

are given a list of items and must collaboratively arrange them into plausible aisles for a

grocery store. The sixth task (the budget task) is assumed to be a high motivator for speaker

engagement, and thus elicit more instances of strong stance-taking. Participants are provided

with a hypothetical county budget, and asked to agree on which line items to cut in order to

balance the budget. Close talking microphones captured mono audio for each speaker [52].

Speech is subdivided into spurts of continuous speech where no internal pause is greater

than 500 milliseconds, following [54]. Human annotators transcribed the speech at the word

level, and marked speech spurts as having one of four stance strength levels (none, weak,

moderate, or strong), and one of three stance polarities (neutral, negative, positive) [49, p.

31].

2.5.2 Telephone Conversations

Two other conversational datasets appear in the experiments in Chapters 3 to 5, the Switch-

board and Fisher datasets [55, 56]. These are two collections of telephone calls, randomly

initiated between strangers located in the United States on a small set of assigned topics.

These datasets both have widespread use in many domains including speech recognition.

While these datasets both comprise approximately 10 minute telephone conversations on a

provided topic, there are some distinctions. In Fisher, subjects were explicitly allowed to take

part in up to 3 recording sessions [56]; in Switchboard there was no explicit permission for

participants to take part in multiple calls, thus some speakers appear in multiple conversa-

tions [55]. In contrast to ATAROS, Switchboard and Fisher contain an order of magnitude

more paired audio and transcription data, on a wider dialectical pool. This makes these

datasets better suited for training neural language models, which benefit from large training
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data. For Switchboard in particular, many useful annotations have been contributed by var-

ious research groups, including annotations for dialogue act (with labels for backchanneling)

[57], high fidelity speech timing [58], and disfluencies [55]. The dataset also offers relative

gender balance, and other demographic information such as dialect region and age of all par-

ticipants. Table 2.2 gives an overview of the size of Switchboard, with gender information

about the participants.

Table 2.2: Count of conversations by gender in Switchboard. Note that these counts do not
reflect the true number of unique participants in the dataset, but the number of conversations
matching the demographic criteria. This is because some participants took part in more than
one conversation.

Subset Speaker
Gender

Total
Count

with Female
interlocutor

with Male
interlocutor

Female 2053 1202 851Train
Male 1669 851 818

Female 134 48 86Dev
Male 222 86 134

Female 122 36 86Test
Male 276 86 190

In telephone audio collected at the time these data were collected, band pass filtering

removed information from the signal at high and low frequencies. Variables such as environ-

mental noise, signal quality, distance from speaker to phone receiver, and other uncontrolled

factors such as phone make and model are also an inherent challenges of working from tele-

phone data.
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Chapter 3

AUTOMATIC PUNCTUATION PREDICTION FOR
SPONTANEOUS SPEECH

3.1 Prosody and Punctuation

Thus far, I have described prosody as a process occurring primarily in spoken language, one

that is tied to the high-level acoustic properties of speech. However, artifacts of prosody are

also present in written language as well. Chiefly, punctuation can be viewed as a proxy for

many prosodic functions. For example, commas can be used to indicate clause structure.

Exclamation points, periods, and question marks are a shorthand for the prosodic contours

that define exclamations, declarations, and questions, respectively. Thus punctuation is a

crucial part of many written languages, because it has the power to influence the same types

of meaning changes as prosody does to spoken language.

3.2 Automatic Prediction of Punctuation for Speech Recognition

In Automatic Speech Recognition (ASR), machines are tasked with transforming language

from a spoken modality to a written modality. In order for readers to recover the same

meaning from the written language as in the original speech, the transcription must include

information from prosody, such as sentence structure. By effectively using punctuation

within the transcribed text, systems are able to preserve some of the prosodic information

The work presented in this chapter was completed in equal collaboration with Yeonjin Cho, as published
in “Leveraging Prosody for Punctuation Prediction of Spontaneous Speech” at INTERSPEECH 2022 [42].
My specific contributions were the research question, experimental design, and equal contributions to
analysis.
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that would otherwise be lost.

At the time of this work, many ASR systems did not have mechanisms for including punc-

tuation in transcribed text. This results in transcriptions that can be difficult to correctly

interpret, or even to read fluently [59]. These difficulties are magnified when other challenges

such as word recognition errors co-occur. Accurate punctuation prediction for automatically

transcribed text is thus vital in providing users with readable, interpretable text.

As discussed in 2.3, the expected register of speech has a massive impact on its acoustic

and grammatical properties. For more formal and regularized registers of language, e.g.,

read speech, the “correct” punctuation can be predicted with high fidelity from the word

sequence alone. This is especially true for modern large language models. However, prosodic

features may still be useful for less formal, spontaneous styles of speech. In these registers,

speech structure is less likely to match the text that the language models were trained on.

For instance, spontaneous speech contains many partial or incomplete sentence fragments,

which are uncommon in text and do not have standardized terminal punctuation and may

require a novel punctuation inventory. In these cases, prosody can be more helpful. However,

it is also possible that prosodic features are susceptible to the conditions that induce ASR

errors.

In this chapter, I propose a framework for incorporation of prosodic features into a model

for predicting punctuation for transcribed speech. I include punctuation marking for inter-

ruption points and incomplete utterances, which are necessary for the domain of transcribed

speech. I will show how using prosody improves performance over text alone, and the extent

to which punctuation quality is influenced by transcription quality. My research questions

are as follows:

1. How much does use of prosody improve punctuation prediction?

2. Are some types of punctuation easier or more difficult to predict?

3. How does transcription quality effect punctuation prediction?
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3.3 Methods

I train models that learn associations between text transcriptions and acoustic features, and

word-level punctuation tags, and evaluate on unseen test data. I compare models that learn

these associations from various types of acoustic features.

3.3.1 Modeling Procedure

I base a punctuation prediction model on the dialog act recognition model from [40, 43], which

is an RNN encoder-decoder with attention [60] with a CNN for the acoustic features [61]. In

contrast to [43], previous context labels are not used since punctuation is less dependent on

the labels of previous turns. A graph of the model structure is given in Figure 3.1.

Figure 3.1: Schematic of the punctuation model. Each turn u is encoded via embeddings of
the BERT-tokenized text, (optional) pause and duration embeddings, and (optional) con-
volved acoustic features. Image from [43].
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3.3.2 Input features

The input to the model varies in two dimensions: the type of transcriptions (either human-

created or ASR), and the acoustic features used. A model with a complete set of prosody

features includes word embeddings, pause and duration features, and learned energy and

pitch features. In sum, these comprise a prosodically-contextualized word vector. Word em-

beddings are derived from pre-trained BERT embeddings [62], specifically the base uncased

version of BERT.

The pause and duration features include a raw and categorical (6 categories as in [40])

measure of the pause duration after each word, and word duration normalized by the mean

duration of the word type in the training set.

The acoustic features are learned via a CNN from energy and pitch contours as described

in [40]. In contrast to [40], the center of the convolution window is placed at the end of

words, since changes in prosody that are associated with syntactic structure are more likely

to occur at the word boundary.

Pitch and energy measures were extracted at the frame level using Kaldi [63], normalized

by speaker, and aligned to the word-level. Aligned frames are convolved with N filters of m

sizes (a total of mN filters). This allows features to capture information at different time

scales. Each filter has a 1-D convolution over the pitch and energy features with a stride of

1, and the result is max-pooled to output mN -dimensional speech vectors.

3.3.3 Data

I use the Switchboard dataset [55] as the setting of experimentation. The Switchboard

dataset has been transcribed and corrected by expert annotators, including annotations for

dialog acts and disfluencies. As a practical consideration, I limit analysis to the subset of

sessions which have been annotated for dialog acts [64], since the system I build from [40] was

originally designed for dialog act segmentation and recognition. I also follow the train-test
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split described in [64]. I use the text from the transcription set with disfluency annotations1

when available. The Mississippi State transcriptions [58] correct time alignments from previ-

ous transcriptions and are considered the most temporally-faithful available transcriptions. I

use the Mississippi State timings when alignments are available. The test set defined in [64]

includes some sessions which have not been annotated for disfluency. Where experiments

predict interruption points, the reported performance is based on the subset of the test set

that has been annotated for disfluency. I label this the “IP test” set.

Table 3.1 reports the relative size of these subsets of data.

Table 3.1: Dataset statistics of Switchboard, from [42].

Split # Dialogues # Turns # Sentences # Tokens
train 1.1K 107K 194K 1.4M
dev 21 1.6K 3.2K 25K
full test 19 2.4K 4.1K 29K
IP test 14 1.7K 2.9K 21K

3.3.4 Preprocessing

The speech unit processed by the model is a speaker turn, i.e. the concatenation of unin-

terrupted utterances from a speaker, ignoring backchannels. Backchannels are treated as

separate turns. Non-linguistic vocalizations (e.g. laughter or yawning) are removed from the

transcriptions. Text is tokenized at the word level, with no separation of contractions. While

many tokenizers for this kind of data and task split contractions (you're → you 're), on

the basis of semantic and syntactic distinctiveness, I choose not to split on the basis that

non-final constituents of a contraction are never punctuated and further that the contraction

as a whole comprises a prosodic unit.

Punctuation labels are taken from the Switchboard transcriptions with some exceptions

1https://doi.org/10.35111/gq1x-j780
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Figure 3.2: Example of Switchboard preprocessing. The top block shows the raw data,
including original disfluency annotations; the middle block shows the mapping of annotations
to punctuation tags; and the bottom block shows the resulting labels. Image by Yeonjin Cho
[42].

as shown in Figure 3.2. The general tag set is:

• Period - full stop, terminal punctuation for sentence-like units

• Question - terminal punctuation for interrogative utterances

• Comma - non-terminal punctuation

• Incomplete - premature termination of an utterance (“-” in Switchboard notation)

• Interruption Point (IP) - the demarcation between reparandum and repair in a disflu-

ency (“+” in Switchboard notation)

Disfluency span markers, annotations for coordination, and discourse markers are ignored.

In the standard Switchboard transcriptions, filled pauses and interruption points are always

enclosed by commas. This practice artificially biases the tag set towards non-standard comma
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prediction, and so commas in those regions are removed. Periods are inserted at the end of

slash units (sentence-like units of speech from one speaker). In addition, commas attached to

uh and um are removed, unless they precede the phrase you know. Non-terminal punctuation

such as exclamation marks and ellipses were infrequent in the dataset, and are rarely consid-

ered in punctuation prediction systems [c.f., 65, 66, 67, 68]. Thus, all terminal punctuation

except question mark is replaced with a period. Punctuation in general is associated to the

word directly preceding it.

The two sets of experiments differ in how interruption points are labeled. In the first set,

interruption points are treated as having no punctuation. I will also refer to these as the

4-class experiments, since they will predict only comma, period, question, and incomplete.

Counts of tokens labeled using the 4-class set are given in Table 3.2. In the second set, the

model can explicitly predict interruption points. These are the 5-class experiments. In both

settings, a dummy “other” (O) label is predicted for all words without punctuation.

Table 3.2: Counts of 4-class punctuation types: ‘C,’=comma; ‘P.’=period; ‘Inc-’=incomplete;
‘Q?’=question; ‘O’=no punctuation. Roughly 4% of the ”O” tokens from the 4-class corre-
spond to IPs in the 5-class system. From [42].

Split C, P. Inc- Q? O Total
train 128K 127K 9.0K 7.8K 1.1M 1.4M
dev 3.2K 2.2K 144 92 19K 25K
full test 2.8K 2.7K 175 197 23K 29K
IP test 1.8K 1.9K 134 125 16K 21K

3.3.5 Automatic Speech Recognizer

I use ASPiRE [69], a standard standard benchmark for ASR systems at the time of this

work, available in Kaldi’s [63] model suite and trained on Fisher [56], to create automatic

transcriptions for Switchboard. This system has a word error rate of 21% on the development

and 24% on the test set of Switchboard.
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3.3.6 Performance Evaluation

Prediction quality is evaluated using macro F1 scores. Some care must be taken when

comparing the performance of predictions based on human-created transcriptions and those

based on ASR transcriptions, since the ASR may insert or delete tokens from the reference

transcript. Following [67], if a deleted word is assigned punctuation and the previous word

was also assigned the same punctuation, then it is considered correct. Equations 3.1 and 3.2

provide the formulae for computing precision and recall of question mark (“?”) as an example;

the metrics for other punctuation types are computed in the same fashion.

P =
|TP (?)|

|? in ASR| (3.1)

R =
|TP (?)|

|? in reference| (3.2)

I report performance of models run on subsets of the input features, including only the

word embeddings and the word embeddings plus the categorical pause feature. The RNN

I base all models on is a uni-directional GRU [70], and parameters were learned using an

Adam optimizer [71] with initial learning rate 0.0001, halving when the performance on the

development set does not improve every 3 epochs. The best performance occurred with 12-

dimensional pause embeddings; the CNN has N = 32 sets of filters of widths [5, 10, 25, 50],

i.e. m = 4, totaling 128 filters.

3.3.7 4-class prediction

First, I compare the performance of 4-class models given various sets of input features. Ta-

ble 3.3 provides the test F1 scores for 4-class prediction. F0 and energy features give a

boost over the pause in the macro scores for hand transcripts, due to improved prediction

of “incomplete.” Commas are predicted least accurately. Performance degrades for the ASR

transcripts, with a large regression for predictions of “incomplete.” Inclusion of prosodic fea-

tures impacted performance more with ASR transcripts, and was most useful for recognizing
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instance of “incomplete.”

Table 3.3: F1 scores for prediction of 4-class punctuation types on the full test set, using
different features with hand vs. ASR transcripts. From [42].

Hand C, P. Inc- Q? Macro
text only .60 .81 .80 .73 .736
pause only .60 .82 .80 .74 .739
all features .60 .82 .82 .73 .744

ASR C, P. Inc- Q? Macro
text only .53 .77 .49 .60 .597
pause only .53 .77 .52 .62 .612
all features .53 .78 .53 .62 .615

3.3.8 Interruption Point Prediction

Table 3.4: F1 scores for prediction of 5-class punctuation types on the IP test set, using
different features with hand vs. ASR transcripts. From [42].

Hand C, P. Inc- Q? IP+ Macro
text only .63 .81 .80 .79 .77 .761
pause only .63 .82 .81 .78 .76 .759
all features .65 .82 .82 .80 .78 .773

ASR C, P. Inc- Q? IP+ Macro
text only .56 .76 .49 .65 .54 .600
pause only .56 .77 .47 .63 .54 .595
all features .57 .77 .52 .65 .55 .611

Table 3.4 gives test results for the 5-class punctuation task. The prediction of interruption

points is sensitive to transcription type. For human transcripts, the interruption point pre-

diction has relatively high precision and thus does not effect the prediction quality of other

punctuation types. For the ASR transcripts, commas and question marks are predicted more

faithfully when the interruption point is included. In contrast, when interruption points are
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included in systems with acoustic features, F1 was lower compared to the 4-class model

except for comma prediction. The categorical pause feature is not as helpful for predicting

from the 5-class set compared to the gains for the 4-class prediction.

3.4 Conclusion

With respect to the utility of prosody in predicting punctuation, I found that using any

prosodic information either modestly improved or had no effect for the majority of predic-

tions. Using all prosodic features tended to be more successful than using pause features

alone. Both simple and learned acoustic cues increase the computational load of the mod-

els, however they do not degrade performance. Concerning the ease with which different

punctuation can be predicted, I found that periods and question marks were easier to pre-

dict than commas. The relative accuracy of interruption point and incomplete predictions

were sensitive to transcription type. The learned acoustic-prosodic features were more help-

ful in predicting incomplete boundaries, especially when applied to ASR transcripts. In

experiments where interruption points were explicitly modeled, prediction quality of the

other punctuation types improved. As to whether transcription quality influenced predic-

tion performance, I found automatically-generated transcripts induce noise that enhances

the difficulty of detecting punctuation. These results show that explicit acoustic-prosodic

features have potential for modelling prosodically-salient NLP tasks, although more work is

needed to understand the magnitude of potential benefits.
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Chapter 4

MODELING ACOUSTIC-PROSODIC ENTRAINMENT

Computational representations of prosodic information are important for a variety of

speech technology applications. However, the acoustic manifestations of prosodic information

are influenced by many interacting factors that make it difficult to predict. This is especially

true in spontaneous conversation, where speakers will adapt their speaking styles based on

conversational context and the behavior of their interlocutors. In this work, I present a

method for predicting salient prosodic features of spontaneous speech, using the prosodic

information from a speaker’s and interlocutor’s speech history. Motivated by studies of

entrainment, I use the models’ ability to accurately predict speakers pitch in the Switchboard

corpus as a method for exploring interdependence of speaker prosody. The models showed

no significant effects for the specific prosody features I explored.

4.1 Experimental Goals

One well-studied phenomena in dyadic conversation is entrainment. Also called accommo-

dation, this is the process of speakers converging on a common speech style, for example

using the same words when synonyms are available, or adopting similar phrasal structures

[72]. However, the complexity of human communication, including complex interactions be-

tween multiple sociolinguistic, environmental, and other contextual factors makes the degree

of entrainment speakers will engage in difficult to predict. Of interest to this work is the

degree to which the prosodic entrainment between speakers can be quantified and predicted

using one traditional acoustic measure, speaker pitch.

In this chapter, I propose a method for predicting salient pitch features of spontaneous

speech by leveraging the prosodic information extracted from both a speaker’s own speech
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history and that of their interlocutor. My hypothesis is that by explicitly encoding aspects of

conversational dynamics, such as turn taking behaviors, and speakers’ differences in pitch, I

will be able to leverage natural prosodic entrainment in the data to more accurately predict

prosodic features of future speech.

I use an LSTM architecture to learn prosodic properties extracted from speech turns of a

single speaker, augmented with salient information about their interlocutor’s previous turns.

This system is used to predict pitch features about the next turn in the time series. I present

the performance of this model on the Switchboard corpus [58]. I explore how providing

different combinations of prosodic features to the models impacts their performance. I use

fine-tuning of models on data subsets, specifically considering high versus low entrainment,

speaker gender, and inter-speaker gender concord to assess predictability based on those

factors.

Of principal interest to this study is the success with which aggregate acoustic measures

of prosody across an utterance can be modeled using a neural architecture. This comprises

two research questions:

1. To what extent does the pitch prosody an interlocutor’s speech improve the prediction

of the pitch prosody of future speech?

2. Does speaker entrainment, disentrainment, or interlocutor gender make a speaker’s

pitch more predictable?

4.2 Entrainment

Conversational participants adjust their communicative behaviors based on the behavior of

their interlocutors. This behavior mentioned is often assumed to be unconscious [73]. This

happens in many modalities. For example, [74] found that nonverbal synchrony between

speakers in conversational dyads, such as mirroring facial muscle activation or posture, was

predictive of conversational rapport. It has also been suggested that nonverbal synchrony
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is a way for listeners to activate similar neural pathways as their interlocutors to facilitate

fostering of empathetic conversation [75].

Speakers alter their speech to sound more like the speech of their interlocutor(s). This

type of behavior has been described as a communicative device to establish conceptual pacts,

the norms that inform meaning given the context of the conversation [76]. It is also associ-

ated with speakers’ sociolinguistic indexing as a member of an in-group [72]. The opposite

behavior, disentrainment, where speakers alter their speech to be less like their interlocutors,

is also observed in spontaneous conversation. Disentrainment or lower levels of entrainment

on some features has been associated with lower conversational success [73], although some

traditional heuristics for disentrainment may be associated with high speaker engagement

[77]. A lack of appropriate baseline speech prosody and prosodic entrainment can be as-

sociated with conversation difficulty or communication disorder and can be perceived as

unnatural by interlocutors [78].

The work of Sarah and Rivka Levitan and colleagues [e.g., 73, 79, 80], has sought to

computationally model acoustic-prosodic entrainment. In [73, 79], the Columbia Games

Corpus [81], which consists of dyads collaboratively completing computer games, is used to

compare the similarity of speech between and within speakers. Specifically, the researchers

measured combinations of pitch, intensity, jitter, shimmer, noise-to-harmonics ratio, and

speaking rate of speakers across sessions. ([79] also made comparisons at the turn-level.)

The experiment that is most applicable to my use case is found in [82], where entrainment is

computed at the session level between interlocutors. The negative sum of absolute differences

of the means of each acoustic measure between speakers is computed, and conversations are

labeled as entraining if the difference between speakers in the session is greater than the

difference compared to speakers in different sessions. This general method of computing

entrainment by comparing acoustic features between different pairs of speakers has been

shown to be correlated with social behaviors and task success [73], however the non-goal-

oriented nature of Switchboard Experiments means that there is less consistency of style

and content across conversations than in the Columbia Games corpus, making between-
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conversation comparisons fraught. Using a measure of within-speaker proximity between

recordings of the same speaker with different interlocutors, as in [79], removes the need to

compare across very different kinds of conversations, provided that speakers can be compared

between different key points in the same conversation. I describe such a method in 4.3.5.

4.3 Experimental Design

4.3.1 Dataset

For training the prosody model, I use the Mississippi State version of transcriptions for the

Switchboard Corpus [58] which contains recordings of spontaneous speech between unfamiliar

interlocutors, where speakers were given a prompt and asked to hold a conversation using

that prompt for about ten minutes. The gender balance of the dataset is given in Table 2.2.

The data were each divided into train, validation/development, and test sets following

the conventions of [83]: conversations with ids matching ‘sw0[23].+’were used for training,

‘sw04[5-9].+’for validation/development, and ‘sw04[01].+’for testing. Other conversations

were unused.

4.3.2 Feature Extraction

For each conversation in the Switchboard dataset, I separate the turns by speaker. Thus, the

pitch features for each speaker are predicted separately. However, that prediction is based

on some information about the interlocutor’s previous speech as well.

Signal features were extracted from the dialogues using the Kaldi Speech Toolkit, using

standard configuration for this dataset (sampling frequency at 8000 Hz, energy not used in

MFCC calculation) [63]. The log of the non-normalized pitch (in Hz, base e) is extracted

from single-channel audio for each speaker. Each feature is computed at the frame level,

where overlapping frames are 10 ms apart with 25 ms duration. A number of experimental

environments were considered. Preliminary experiments conducted using the methodology

described in this section, speech from the Fisher dataset [56], and a large set of acoustic
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features showed negligible benefits to an expansive acoustic feature space. Thus, the pre-

sented methodology includes a minimal set of acoustic features which showed most promise

for model training. From the raw signal features and transcriptions, I extract 3 measures

of speaker pitch, 4 measures of interlocutor pitch, and 4 timing measures. Note that all

mentions of pitch refer to the log pitch provided by Kaldi.

Three features are used to represent the overall behavior of pitch throughout an utterance:

the mean pitch across all relevant frames, the mean pitch across the first 200ms of the

utterance, and the range of unpadded median-filtered permutation of all pitch measures for

the utterance, with a window length of 7 (see Equation 4.1).

range = max(Wi)−min(Wi),where

Wi = [median(frames[i : i+ 7])for i from 0 to (number frames - 7)]
(4.1)

A primary hypothesis of this work is that in spontaneous conversation, prosodic accom-

modation, i.e., entrainment, will influence prosody production. To allow the model to learn

the extent of entrainment in the data, I include four features about the interlocutor: the

mean pitch of their most recent complete utterance, the mean pitch of the final 200 ms of

their most recent complete utterance, and the mean pitch of the first and final 200 ms of their

most recent utterance (complete or incomplete). It is suspected that the features computed

from end 200 ms of previous interlocutions will be especially useful in predicting what occurs

at the beginning of the next utterance of the speaker.

To characterize local turn-taking dynamics, I include four timing features summarized in

Table 4.1. The timestamps used to compute these features were taken from the word-level

timing information available in the Mississippi State version of transcriptions.

4.3.3 Model Architecture

An LSTM was implemented for each configuration under investigation using the nn module

of pytorch [84], having hidden dimension 256, a learning rate 0.001, a dropout rate of 0.1,
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Table 4.1: Timing features for modelling utterance pitch

Timing Feature Description

duration Total speaking time, including inter-word
pauses, of speaker’s most recent turn.

duration since
last of speaker

The difference in time between the start time
of speaker’s most recent turn and end time
of their interlocutor’s most recent turn.

interruption

A binary value denoting whether the
speaker’s most recent turn was an interrup-
tion, i.e. whether it began in the middle of
the interlocutor’s previous turn.

speaking rate

Speaking rate of the speaker’s most recent
turn, computed as number of words per sec-
ond. No post-processing is done to change
the definition of “word” as it is in the Mis-
sissippi transcriptions. Contractions, e.g.,
“wasn’t,” are considered a single word.

batch size of 64, and a maximum of 70 epochs with early stopping on a patience of 3 epochs

and threshold 0.0. The models each have two LSTM layers and a single linear output layer.

The development set was used to create a metric for early stopping.

Conversations were truncated to a maximum sequence length of 206 utterances (within

2 standard deviations of mean sequence length for the Fisher dataset), and then shorter

conversations padded to this length. Before training, the data is normalized using a MinMax

scaler transformation (as implemented in MinMaxScaler module of sklearn [85]) to values

between -1 and 1, fit on the set of training data.

The base models include as input: the 3 pitch features and 4 timing features associated

with the target speaker, plus the features associated with the interlocutor. Separate models
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are trained for predicting the mean pitch of the first 200ms and the pitch range as defined

in Equation 4.1. Contrasting models are trained with no interlocutor features.

Model performance is recorded as root mean square error between the ground truth pitch

measure and predicted value.

4.3.4 Fine-tuning conditions

To investigate whether characteristics of certain types of conversations are more informative

of pitch trajectories, I follow a split fine-tuning procedure based on speaker characteristics.

Along the dimensions of entrainment, speaker gender, and inter-speaker gender concord

(defined below), I split the training data into two equally-sized subsets. I fine-tune each of

the base models on each of the subsets separately, and report performance on the complete

test set.

Fine-tuning dimensions:

• Entrainment: for each speaker, I compute an entrainment score using the method

described in Section 4.3.5. Speakers are sorted and evenly split by their entrainment

value, creating low and high entrainment subsets.

• Speaker gender: One subset contains all female speakers, the other subset contains

all male speakers.

• Inter-speaker gender concord: Data is subset into four categories based on both

the gender of the speaker and the gender of their interlocutor. I abbreviate these

subsets as female speaker, female interlocutor (F-F); female speaker, male interlocutor

(F-M); male speaker, female interlocutor (M-F); and male speaker, male interlocutor

(M-M).

To separate the effect of the criteria of the data subsets from the reduced training size, I also

fine-tune on subsets of the data of the same size as those in the three fine-tuning conditions,

but with speakers randomly assigned to the subsets.
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Models that are fine-tuned on splits according to entrainment are initially trained on a

subset of the training data (referred to as null entrainment excluded) that does not include

any speakers for whom an entrainment score was not available (e.g., due to pitch tracking

errors).

4.3.5 Measuring Entrainment

I base the calculation of prosodic entrainment on the measurement used in [73]. For each

speaker in the dataset, I divide the number of their turns in three, and compare the voice

quality features of the first third and the last third of turns in the conversation. The moti-

vation for this comparison is that I expect that in the initial phase of conversation, strangers

are learning the speaking style of their interlocutor and are less likely to be influenced by

their speech. At the end of the ≈10 minute conversation, the speakers are most likely to

be familiar with each others’ speaking styles, and adaptation may make their speech during

this period shift away from their style at the beginning of the conversation. I assume that

changes in voice quality between the beginning and end of conversation are due to prosodic

entrainment or disentrainment.

For each turn in either the first or third sections of conversation, I extract the following

features using Praat [86] with default settings:

• Maximum f0

• Average intensity

• Maximum intensity

• Jitter, as Relative Average Perturbation (RAP)

• Shimmer, as “the average absolute difference between the amplitudes of consecutive

periods, divided by the average amplitude” [86]
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• Speaking rate, as syllables per second. Pronunciations are taken from the CMU Pro-

nouncing Dictionary1. Out-of-vocabulary words do not contribute to speaking rate.

Unlike [73], I do not include Noise-to-harmonics ratio (NHR) as a voice quality measure.

This feature is especially sensitive to errors in pitch tracking, which happens often with

Switchboard audio due to signal quality. Since many conversations would have been excluded

from analysis even though NHR was the only voice quality measure not able to be computed, I

choose instead to deviate from [73]’s definition further, with the hope that similar information

will still be encoded in the other voice quality features which can be extracted from the

majority of conversations.

A single entrainment score is calculated for each speaker by taking the absolute difference

of the average of each feature between the first and final third partitions of speech. These

average differences are normalized by the averages of the first partition, and summed to yield

a single measure. The sum is negated to make greater differences (i.e. non-entrainment or

disentrainment) have the lower value. This procedure is formalized in Equation 4.2, where

Pn is a matrix of voice quality measure computed on each turn in partition n, I is the set

of voice quality features, J is the number of turns in the final third partition, and K is the

number of turns in the initial third partition. While J and K should be approximately equal,

they may differ between 0 and 2 depending on the total number of turns in the conversation.

−
I∑

i=1

∣∣∣∣∣∣
∑J

j=1(P3i,j)
J

−
∑K

k=1 P1i,k

K∑K
k=1 P1i,k

K

∣∣∣∣∣∣ (4.2)

Because this score encodes information about speaker change over time, I hypothesize it

could be a proxy for predictability of pitch prosody features.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Table 4.2: Model evaluations using minimal prosody features, timing information, and in-
terlocutor features to predict pitch at turn onset and median-filtered pitch range. Cells with
multiple values have been fine-tuned on more than one training subset, and then evaluated
on all of the data from the test set.

Expt. Model Predicting mean f0,
first 200ms

Predicting range

1 base 0.24 0.46

2 base without
interlocutor features

0.24 0.46

3 base, null
entrainment excluded

0.24 0.45

4 fine-tune on arbitrary
2-way split

1: 0.24; 2: 0.24 1: 0.45; 2: 0.45

5 fine-tune on split by
entrainment

low: 0.24; high: 0.25 low: 0.45; high: 0.45

6 fine-tune on split by
speaker gender

F: 0.28; M: 0.26 F: 0.45; M 0.46

7 fine-tune on arbitrary
4-way split

1: 0.24; 2: 0.24;
3: 0.24; 4: 0.24

1: 0.45; 2: 0.45;
3: 0.45; 4: 0.46

8 fine-tune on split by
gender concord

F-F: 0.27; F-M: 0.28;
M-F 0.26; M-M: 0.27

F-F: 0.46; F-M: 0.46;
M-F: 0.45; M-M: 0.45
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4.4 Prediction Performance of Prosodic Features

Table 4.2 provides the RMSE for all configurations on the held-out test data. When all of

the speakers are pooled for training, we find no difference between the base model (Expt. 1)

and the contrasting version without interlocutor features. Thus, these interlocutor features

are not useful for pitch prediction. This is not expected for the subset of speakers with high

entrainment, so I choose to compare that subset of speakers to the low entrainment speakers.

Since training on a subset of speakers could give degraded performance, I fine-tune spe-

cialized models on an initial model trained on all the data. For the entrainment case, there

are some speakers with entrainment measurement errors, so those were excluded from the

initial model. Experiment (3) shows that this had no effect on performance relative to the

initial model. As another control for training set size, I also fine-tuned models on random

splits of the data. There was no significant difference in performance for any model (Ex-

pts. 4, 5), leading to the conclusion that there is no observable effect of entrainment, either

because of the specific input features chosen or the target pitch prediction features.

I analogously test the predictability of pitch features relative to gender and gender con-

cordance between interlocutors. Again, I use the same random controls (Expts. 4, 7). When

predicting pitch range, there is no difference among the different conditions. For predicting

the mean pitch onset, I observe an increase in error for both speaker gender and gender

concord compared to the random control. This suggests that models fine-tuned on gendered

data may be over-training.

4.5 Discussion

4.5.1 Distribution of Entrainment

Figure 4.1 illustrates the distribution of entrainment values in this dataset. The x-axis rep-

resents the entrainment values, while the y-axis corresponds to the frequency of occurrences.

Values ranged from -112.62 to -0.22. From the figure, I observe a skewed distribution where

speakers generally trend toward increased consistency in voice quality features between par-
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titions of the conversation. Outliers are extreme and negative; more investigation is needed

to determine what is the primary cause of this phenomenon. They may be be due to pitch

tracking errors, use of out-of-vocabulary language, or more complicated patterns of speaker

accommodation than can be modeled with aggregate voice quality measures.

Figure 4.1: Distribution of entrainment scores in the dataset.

4.5.2 Subset Analysis: Speaker Gender

Model performance showed no differences when trained and evaluated on gendered subsets

of data. The proxy entrainment measure also does not appear to show any difference in

distribution between Male and Female speakers. This is shown in Figure 4.2. I performed a

1-way Welch’s ANOVA on the distributions of entrainment scores relative to speaker gender,

and found no significant effect.
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Figure 4.2: Densities of entrainment scores relative to speaker gender estimated using kernel
density. Densities are normed individually to remove any differences contributed by sample
size. Outliers with z-scores > 3 are not pictured.

4.5.3 Subset Analysis: Gender Concordance

While inter-speaker gender concord did not improve pitch predictability, it has been shown

previously to impact the extent to which speakers entrain to one another [73]. Figure 4.3

shows the distribution of entrainment scores for speakers in the Switchboard. Densities are

normalized individually to remove any differences contributed by sample size. Outliers with

z-scores > 3 are not pictured. All groups showed similar unimodal distributions with long

left tails. However, there does seem to be a slightly different shape for the Female-Female

cohort, which has a more peaked distribution than the others. This intuitively makes sense,

as previous work on entrainment has found that women, especially when speaking to other

women, can be an edge case for prosodic entrainment [73]. A 1-way Welch’s ANOVA was

performed on the distributions of entrainment scores relative to inter-speaker gender concord,

which returned a strong significant effect (F = 10.94757, p < 0.0001).
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Figure 4.3: Densities of entrainment scores relative inter-speaker gender concord estimated
using kernel density. Densities are normed individually to remove any differences contributed
by sample size. Outliers with z-scores > 3 are not pictured.

4.6 Conclusion

This study has presented a method of representing speaker prosody using information about

both the speaker and their interlocutor, for predicting salient prosodic features in sponta-

neous speech. Leveraging a modified quantification of acoustic-prosodic entrainment com-

puted on conversational data, and incorporating both a speaker’s own speech context and

that of their interlocutor, the proposed approach explored multiple plausible manifestations

of entraining behavior to improve the ability to predict the range and onset pitch behaviors

a speaker will surface given their conversational context.

The results obtained using the LSTM architecture on the Switchboard corpus yielded no

findings. However, other prosodic features might lead to different conclusions.

The incorporation of entrainment scores based on quantitative measures of voice quality as

a criteria in the fine-tuning pipeline is novel, and further investigation is need to see whether
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the measure’s relationship with inter-speaker gender will make it useful for the prediction

task in some other form.

The outcomes of this study provide a foundation for future research on prosodic modeling.

Further investigations should revisit the model choice and architecture, especially if the

entrainment score can be used in a more direct way as part of the pipeline. In addition to

looking for speech sources with more modern language, the voice quality extraction process

would benefit from a more controlled recording environment to reduce fatal pitch tracking

errors. I hypothesize that with practical adjustments to the machine learning modules and

with careful dataset selection, the features described in this work can meaningfully inform

understanding of prosody and its trajectory in spontaneous dyadic conversation.



39

Chapter 5

MODELING INFORMATION TRANSFER THROUGH
SPEECH TIMING PATTERNS

5.1 Conversation Analysis

In language activities with more than one participant, speakers must navigate the shared

speech timing between all interlocutors, deciding who should speak next and when, when

it is acceptable to interrupt the current speaker, and how to interpret deviations from the

expected timing of conversation. Thus conversational timing includes the duration of speech,

any pauses a speaker makes, and the pauses or overlaps in speech between speakers. Quan-

titative analysis of timing interplay between speakers often follows the Jeffersonian Con-

versation Analysis style described by [88]. Central to this description system is the notion

of turn-taking, where conversations are divided temporally by minimally overlapping turns

[88]. A single speaker should hold the floor at any given point in time. This floor is some-

times somewhat circularly defined as the ability to have a turn in the conversation [89];

there is also a body of researchers who choose to eschew strict definitions of floor in favor

of functional descriptions of speaker and listener behaviors in turns [90]. Nonetheless, the

timing of conversation in the Conversation Analysis framework is relative to the units that

comprise and exclude speech from speaker turns. In the canonical methodology of this style

of analysis, the timing of turn-taking is described by expert listening and stopwatch-based

counting of timing in tenths of a second [88, 91, p. 81], and in fact the speech timing of any

This chapter is revised from “Investigating the Influence of Stance-Taking on Conversational Timing of
Task-Oriented Speech,” which appeared in INTERSPEECH 2024 [87]. My specific contributions were the
research question, experiment design and implementation, and equal contributions to analysis.
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analysis in this tradition is not advised to be compared between practitioners for this reason

[92]. However some more recent efforts have included finer-grained or automated extraction

of timing features [e.g., 93, 94]. These methods allow conversation analysis to be applied to

modern, large corpora without the massive expense of annotating turns by hand. Thanks to

this advantage, I will apply conversation analysis to a large corpora of dyadic speech, and

show one use case where these methods can aid in understanding factors that change the

course of speech timing.

5.2 Stance

As discussed in Chapter 2, stance-taking may be motivated by a desire for “the expression of

internal psychological states of an individual speaker” [95], to agree with their interlocutor

[96], built rapport [49], or other subjective and inter-subjective goals [97]. Previous work has

shown that the phonetic and prosodic properties of speech are affected by stance [49, 98].

What’s more, stance-taking has been shown to significantly affect speech spurt duration in

dyadic speech [49]. However, the timing of conversation is much more than the timing of a

single speaker. The Jeffersonian analysis method for discourse can be utilized to make sense

of the dual timing between speakers and interlocutors.

5.3 Research Questions

In this chapter, I investigate the influence of stance-taking behaviors on the timing of turn-

taking in dyadic task-oriented conversation. I specifically ask whether the strength and

polarity of stance-taking affects duration measures related to the taking of turns in collabo-

rative task-oriented conversation, and answer the following questions:

1. What distributional variation exists in the conversational timing of speech when stance-

taking is varied in strength and polarity?

2. Is there an impact of speaker gender on the timing of stance-marked speech?
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5.4 Discourse and Stance Behaviors

Hyper-articulation has been shown to be motivated by stance-taking [99], and other prosodic

qualities of speech may also be affected. For instance, Valerie Freeman1 found significant

differences in both utterance duration and speaking rate in different stance conditions in the

ATAROS dataset, also finding that these differences were confounded by speaker gender.

What’s more, it has been shown that there is a relationship between the coordination of

linguistic style and speaker stance [100].

5.5 Experimental Design: Stance as modifier of turn-taking

5.5.1 Stance Annotation

For this study, I consider the third task and sixth tasks from the ATAROS dataset (see

2.5.1 for review). I exclude from the original dataset instances where annotators marked the

stance of a spurt as ambiguous, as well as any conversations from the inventory and budget

tasks which did not have stance annotations. Given these omissions, this analysis is based

on 116 conversations (57 dyads with both inventory and budget recordings, 2 dyads with

only one task type).

5.5.2 Speech Timing Measures

I consider the following common measures for turn-taking:

• Floor-transfer Offset (FTO) - the duration of time during a floor transfer between

the end of the previous speaker’s turn and the beginning of the next speaker’s turn.

FTO can be negative, representing interrupted speech.

• Inter-pausal Unit (IPU) Duration - the inter-pausal unit is a unit of speech from

a single speaker with no internal pauses greater than a threshold. I use a threshold of

180 ms, consistent with previous work on conversation dynamics [e.g., 93, 101].

1V. Freeman 2014, Presentation at the University of Illinois Linguistics Seminar, Urbana-Champaign, IL
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• Pause Duration - the duration of pauses between speech units, where no floor transfer

occurs.

• Turn Duration - the time elapsed from the start of the first, to the end of the last of

consecutive IPUs from a single speaker. When turns consist of a single IPU, the turn

duration is equal to the IPU duration.

For each conversation, I create an interleaved transcript by using the word-level timings

to compose a set of IPUs for each speaker and concatenating all consecutive words that are

separated by no more than 180 ms. This is consistent with other efforts to automatically

annotate turn-taking behaviors [e.g., 93]. IPUs are composed into turns by comparing both

their timing and content. Consecutive IPUs are combined into a turn, provided that no

speech from the interlocutor occurs in the same time. If there is overlapping speech, and

neither IPU is determined to be a backchannel (see 5.5.2), then the floor is transferred to

the speaker whose IPU ends latest. If there is no intervening speech from the interlocutor,

the speaker who has the floor maintains it even if they are not actively speaking. A toy

conversation provided as reference in Figure 5.1.

To map the spurt-level stance annotations to the definitions of IPU and turn from the

Jeffersonian framework, I first consider all speech spurts whose timings overlap with IPU-

or turn-level timings. For all such spurts, I label the IPU or turn with the strongest stance

annotation of any matched spurt, and the non-neutral polarity where available.2 For instance,

an IPU composed of spurts with annotations “Moderate Neutral” and “Weak Positive” will

be given the label “Moderate Positive.” In this way, speech timing and stance features can

be compared at the same level of granularity. To explore a possible effect of gender on the

timing of turn taking [102], I associate the gender of each speaker to the timing measures as

well.

2There were no instances of a turn or IPU having both positive and negative polarity.
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Figure 5.1: A toy conversation, annotated with FTO, IPU, pause and turn annotations.
In this conversation, there are 5 IPUs, 3 turns, and one pause. This illustrates the novel
condition where speech matches the timing of a backchannel but not the text criteria, and
thus acts as a turn-less IPU.

Backchannel Filtering

Backchannels are spurts of speech which occur while a different speaker holds the floor, and

are used to signal to the floor-holder that the backchanneler is listening and supporting their

continued speech [103]. Backchannels do not represent a desire to take the floor [104]; there-

fore, they are excluded from turn-based measures of speech timing. While often backchannels

are described solely by their occurrence entirely within the duration of the interlocutor’s ut-

terance [e.g., 93], this simple definition will erroneously capture speech acts such as failed

attempts at taking the floor. To more conservatively filter backchannels from the corpus, I

first compose a set of backchannel n-grams3 by taking the top 15 most common phrases from

all dialog acts labeled as backchannels in the Switchboard Dialog Act Corpus [105]. I con-

sider speech a backchannel if 1) the text is composed of a combination of the 15 backchannel

n-grams, and 2) the timing is either entirely within or interrupts the interlocutor’s speech.

When backchannels are observed in the ATAROS data, they are ignored for the purposes of

3In order of frequency: [‘okay’, ‘oh’, ‘I see’, ‘uh-huh’, ‘yeah’, ‘all right’, ‘uh’, ‘right’, ‘um’, ‘huh’, ‘yes’,
‘oh okay’, ‘no’, ‘ooh’, ‘well’]
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computing speech timing measures. Table 5.1 shows the counts of speech timing measures,

grouped by stance type.

Table 5.1: Counts of timing measures in the dataset, grouped by stance type. The corre-
spondence for the timing measure labels is: Neu. : Neutral; +: Positive; -: Negative; 0:
None; 1: Weak; 2: Moderate; 3: Strong.

Strength Polarity
Total

Meas. 0 1 2 3 Neu. - +

FTO 3,262 6,752 3,256 84 8,342 734 4,278 13,354

IPU 5,401 11,117 6,016 170 15,847 1,366 5,491 22,704

Pause 2,116 4,340 2,756 86 7,453 632 1,213 9,298

Turn 2,824 6,017 2,933 74 7,417 651 3780 11,848

5.5.3 Statistical Comparison

Figure 5.2: Distribution of Duration of Speech Timing Phenomena. From left to right:
Floor Transfer Offset (FTO), Inter-Pausal Unit (IPU) duration, pause duration, and turn
duration. The top row shows stance strength and the bottom shows stance polarity. For
clarity of presentation, the duration range of these plots is clipped to exclude long right tails
with very low density. All measures except FTO comprise only positive values.
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To evaluate the importance of stance strength and polarity on speech timing, I conduct

Linear Mixed Effects Regressions using lme4 in R [106] where stance strength, polarity, and

speaker gender are taken as fixed effects of the dependent timing variables. Speaker is treated

as a random effect.

5.6 Results

Figure 5.2 presents the distribution of speech timing measures, grouped by stance strength

and polarity. Across strength and polarity conditions the shapes of distributions for each

timing measure follow generally the same shape, with IPU, turn and pause having right-

tailed unimodal distributions with slightly positive modes. The distributions for FTO are

also unimodal and fairly symmetric, with modes near zero.

There is a general trend where the distribution of measures for positive polarity phenomena

have lower variance compared to the other polarity conditions. Similarly for FTO, IPU and

turn, the strong strength conditions have higher variance compared to the other strength

conditions (with the exception of the no stance condition for FTO). The opposite effect is

seen for pause duration: The stronger stance conditions show lower variance than the weaker

conditions. There also seems to be a general paired relationship for stance strength, where

the distributions of Moderate and Strong stance look much more like one another than either

the None or Weak conditions, and vice versa.

Table 5.2 shows the output of the statistical analysis. For each condition, I run a Linear

Mixed Effects Regression with the formula {FTO|IPU|pause|turn} ∼ stance strength +

stance polarity + gender + (1|speaker), where stance strength, polarity, and speaker

gender are treated as fixed effects, and speaker is considered a random effect. The intercept

conditions were None (for strength), Neutral (for polarity), and male (for speaker gender).

Data points greater than 2 standard deviations from the mean are discarded.

The majority of the stance conditions tested showed significant effects across the speech

timing measures. In contrast, there were no significant effects for speaker gender. Negative

stance polarity was significant (p < 0.005) with respect to pause duration, but none of the
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Table 5.2: Statistical results of comparison of stance conditions and duration measures. Each
test was based on the normalized duration measures, and controlled for speaker gender. Sig-
nificance is labeled with codes *** for p < 0.001 and ** for p < 0.01, and values abbreviated
to “< 0.001” when the value was less than 0.0001.

Meas. Effect t-value Pr(>t) Sig.

FTO

Intercept 7.1E+01 6.61 <0.001 ***
+ 1.3E+04 -8.43 <0.001 ***
- 1.3E+04 0.38 0.705826
1 1.3E+04 -1.51 0.132191
2 1.3E+04 -6.08 <0.001 ***
3 1.3E+04 -3.60 <0.001 ***
Female 5.6E+01 0.005 0.995830

IPU

Intercept 7.2E+01 19.38 <0.001 ***
+ 1.1E+04 -12.39 <0.001 ***
- 1.1E+04 0.00 0.999
1 1.1E+04 8.41 <0.001 ***
2 1.1E+04 18.40 <0.001 ***
3 1.1E+04 7.77 <0.001 ***
Female 5.8E+01 1.396 0.168

Pause

Intercept 9.0E+01 34.39 <0.001 ***
+ 9.0E+03 -8.77 <0.001 ***
- 9.0E+03 -2.78 0.00553 **
1 9.1E+03 -9.57 <0.001 ***
2 9.0E+03 -12.45 <0.001 ***
3 9.1E+03 -6.27 <0.001 ***
Female 6.0E+01 0.154 0.87837

Turn

Intercept 7.2E+01 19.38 <0.001 ***
+ 1.1E+04 -12.39 <0.001 ***
- 1.1E+04 0.00 0.999
1 1.1E+04 8.41 <0.001 ***
2 1.1E+04 18.40 <0.001 ***
3 1.1E+04 7.77 <0.001 ***
Female 5.7E+01 0.324 0.747
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other measures. Weak stance showed a significant effect for all speech timing measures except

FTO. Significant effects for all stance types on FTO and pause (excluding intercept condi-

tion) resulted in shorter durations. For turn and IPU duration, significant stance strength

conditions were associated with longer durations, while significant polarity conditions were

associated with shorter durations.

5.7 Discussion

These results suggests statistically significant relationships between the type of categorical

stance described in the ATAROS dataset, and the timing of turn-taking associated with this

type of dyadic, task-oriented speech.

A pattern emerged between the no stance and weak stance conditions, with speech timing

measures between these two conditions having similar distributions. Likewise, moderate

and strong stances demonstrated coordinated timing patterns. This observation suggests

that a certain level of strong stance may be essential before substantial alterations occur in

speakers’ production models, although further study is needed to know whether this theory

has bearing on the cognitive processes of speech production and perception.

5.7.1 Negative Polarity

The regressions yielded compelling evidence supporting the hypothesis that speaker stance

may significantly influence the coordination of turns in conversation. With most stance

conditions showing significant effects for all speech timing measures, the lack of significance

for negative polarity with respect to pause and turn may be due to a lack of power (only

5.5 - 6.8% of the instances of each timing measure had negative polarity). More research

is needed to determine whether this difference suggests a similarity between neutral and

negative polarity, or whether the lack of significance is due to other factors (e.g. annotator

bias, etc.).
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5.7.2 Speaker Gender

The lack of significance for the interaction of speaker gender and speech timing measures is

unexpected given previous findings. In a gender-balanced 20-dyad sample of the ATAROS

dataset, [49, p. 26] found that while there were not overall differences in the spurt duration

and speaking rates between male and female participants, women were found to have higher

relative speaking rates in the inventory (low stance eliciting) task. From a smaller 12-dyad

sample, they found that spurt length differed more for men between the inventory and bud-

get (high stance eliciting) tasks [49, pp. 24-25]. While it is possible there are interactional

sociolinguistic factors that may affect gendered manifestations of stance, in follow-up exper-

iments where both speaker and interlocutor gender were accounted for I similarly found no

significant effects.

5.7.3 Long Negative Floor Transfer Offsets

In this paper I present a method for automatically labeling and interleaving turns in conver-

sation, based on the standard annotation method for this type of turn-taking analysis and

augmented with a lexical check for backchannels.

The expectation from the field of Conversation Analysis is that the majority of floor

transfer offset times should be positive and near zero [88]. It should be noted that there is

dissent among some researchers whether this norm is an adequate or relevant motivation for

the patterns found in conversational speech [c.f. 107]). However, in other corpus evaluations

of the timing of turn-taking [e.g., 93, 101, 108]), they indeed find patterns of floor-transfer

offset that match this assumption.

While the modes of the densities of FTO under all stance conditions were near zero, I

observed many instances of long negative FTO in all conditions as well. To investigate this

behavior I randomly sample 25 instances of IPUs from the budget task preceded by an FTO

less than -2 seconds and I impressionistically observe four categories of speech. These are

summarized in Table 5.3. The most frequent speech type with long negative FTO were failed
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attempts to take the floor. There were also five instances of speech spurts which behaved

most like backchannels, but didn’t match the phrases extracted from the Switchboard Dialog

Act Corpus. A common cause of mismatch was differences in the spelling conventions (e.g.

alright vs. all right; Mmhmm vs. Mm hmm).

Table 5.3: Speech types of sample turns preceded by an interruption (negative FTO) of more
than 2 seconds. Categories were determined by a single author listening to the samples of
25 speech samples from the budget task of the ATAROS corpus.

Speech Type Count

Failure to take the floor 14

Backchannels with
non-Switchboard tokens

5

Expression of
agreement/paraphrasing

4

Floor ownership unclear 2

5.8 Limitations and Future Work

While Linear Mixed Effects modeling provides convenient and interpretable comparison of

features, appropriate use of these models requires that the residuals of features be normally-

distributed. From the distributions provided in 5.2, it is clear that for most of the duration

features this assumption does not hold. In the future, I would like to replicate this experiment

with a more appropriate non-parametric modeling paradigm to confirm the significance of

these findings.

While I have shown a strong relationship between stance and the timing of conversation

(accepting questions of statistical validity), I do not suggest that the timing of conversation

can be anticipated via stance alone. In fact, previous work has shown that there is variety of

linguistic and non-linguistic behaviors related to turn-taking, and further that the acoustic
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changes to speech because of turn-taking can also be induced by other phenomena. For

example, the degree to which conversation follows the norms of speech timing (such as the

majority of floor transfers having near-zero FTO [88]) is confounded by the familiarity of

interlocutors [72, 109], and further by physiological factors such as hearing impairment [110].

There are some known influences of turn-taking and dialogue structure that cannot be

assessed using the ATAROS dataset. Jokinen et al. [95], for example, used a corpus-based

analysis on an audiovisual dataset to map gesture and eye gaze to the occurrence of turn-

taking. However visual cues are not available in ATAROS.

Surprisal, the predictability of speech input given context, is another confound meriting

further investigation. Regions of high surprisal in speech have been show to have a pattern

of hyper-articulation and local changes in speech timing [111], in the same way that hyper-

articulation is observed with strong-taking [99]. It is therefore natural to question whether

a compounding effect emerges when both high surprisal and strong stance are present in

speech, or whether some other mitigating patterns emerge.

5.9 Conclusion

This work uses corpus-based, automatic methods to analyze how the timing of turn-taking

in conversation is influenced by expressions of stance in dyadic, task-oriented conversation

in English. I find that there are significant differences in speech timing measures when

compared with stance strength and polarity, with moderate and strong, positive stance

being consistently associated with significant duration differences in speech timing measures.

I also find that speaker gender does not significantly effect the distribution of speech timing

measures.

This work supports previous findings on the timing and acoustics of stance, and highlights

the importance of inter-subjective timing information in understanding the impact of stance

on speech.
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Chapter 6

STANCE-TAKING AND VOWEL EXPANSION

6.1 Information in the Speech Signal

Many types of linguistic information are simultaneously encoded in speech. Speech can

include information about the sociolinguistic background of speakers and interlocutors, the

discourse function of an utterance, attitudes and opinions, and of course lexical meaning.

The challenge in studying how these meanings are created and perceived is that they are

happening simultaneously and often using the same kinds of acoustic permutations. However,

one consensus opinion is that when speech is more information-laden, it will induce hyper-

articulation [113]. Conversely, speech with a small information load will be more liable to

reduction.

Strong stance-taking, a part of the pragmatic information carried in speech, has been

shown to motivate hyper-articulation [99]. What’s more, research from Jurafsky et al. [57],

among others, has shown that when words are less predictable in a given speech context,

then they are more likely to be hyper-articulated. Both of these findings are compatible with

one another, and compatible with the Lindblom’s theory of hypo- and hyper-articulation

[113], which he asserts is driven by communicative load of all types. However, the effects

of strong stance and predictability on hyper-articulation have not been studied in tandem.

In this chapter, I consider the interaction between stance-taking and lexical predictability

(operationalized as surprisal) and their effect on two measures of hyper-articulation in vowels:

This chapter is revised from “Effects of Information Load and Pragmatic Load on the Hypo-Hyper
Continuum,” which appeared in Fonetik 2024 [112]. My specific contributions were the experiment design
and implementation, and equal contributions to analysis.
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vowel space and duration. Using Generalized Additive Modeling, I compare the effect of

stance and surprisal on the repulsive force within the vowel space and on the duration of

vowels. I show that there are significant interactions between some types of stance-taking

and surprisal, and discuss implications for future study in hyper-articulation.

6.2 Information Motivates Hyper-articulation

In 1990, Lindblom [113] posited an explanation for systematic variation, where redundancy

in the information signal (chiefly, sufficient context in the surrounding speech to recover

missing information) induces hypo-articulation. Conversely, when communicative needs are

higher or when there isn’t sufficient context, hyper-articulation is more likely to occur. This

theory has been tested and supported in a variety of experimental paradigms [e.g., 114, 115,

116, 117, 118, 119]. These works expand the study of articulation to more the channels of

information within speech.

An important consideration for these new channels is the extent to which they overlap

acoustically and influence one another. The pragmatic information-bearing of stance-taking

is a less-studied motivator of hyper-articulation, although previous work has shown a positive

relationship between some types of stance-taking and hyper-articulation [99]. Following this

work, I investigate how surprisal (bearing lexical information) and stance-taking (bearing

pragmatic information) contribute to vowel space articulation. My work answers two research

questions to this point:

1. What individual effects do surprisal and stance have on the vowel space? On vowel

duration?

2. Are there any mitigating/reinforcing interactions between surprisal and stance that

change the degree of hyper-articulation?
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6.3 Methods

6.3.1 Dataset and Stance Annotation

The ATAROS dataset [49, 52] is ideal for investigating these questions, due to its coarse- and

fine-grained stance annotations, and phone level alignments from P2FA [120]. I consider the

recordings from 34 pairs of participants, completing the inventory (participants arranging

inventory in a department store) and budget (participants balancing a hypothetical municipal

budget) tasks.

As in Chapter 5 and [49], I define coarse stance in two categorical dimensions: relative

strength (None, Weak, Moderate, Strong) and polarity (Negative, Neutral, or Positive). I

exclude all data except stressed vowels in content words (nouns, verbs, adverbs, and adjec-

tives).1 Stress labels are taken from dictionary pronunciations from the CMU pronouncing

dictionary.2 Words are annotated for part-of-speech using the pre-trained Greedy Averaged

Perceptron tagger from NLTK [121].3

The counts of stressed vowels in content words are grouped by stance type in Table 6.1.

Table 6.1: Number of vowel instances in the ATAROS budget and inventory tasks, grouped
by stance strength (rows) and polarity (columns).

- Neutral +
None 0 15374 0
Weak 403 19751 12064
Moderate 3749 15003 3344
Strong 282 341 51

1Specifically, I include the following Penn Treebank categories: ’CD’, ’FW’, ’JJ’, ’JJR’, ’JJS’, ’NN’,
’NNS’, ’NNPS’, ’PDT’, ’RB’, ’RBR’, ’RBS’ , ’UH’, ’VB’, ’VBD’, ’VBG’, ’VBN’, ’VBP’, ’VBZ.’

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict/
3https://www.nltk.org/_modules/nltk/tag.html#pos_tag
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6.3.2 Lexical Surprisal

I use lexical surprisal to approximate the lexical information of speech, by training a language

model on a source of comparable data. In order to derive word-level probabilities for the

data, I train an LSTM on a next-word prediction task, using the Fisher training dataset [56].

This neural network’s objective is to learn to predict the next word in a sequence of words

and its architecture is known for its ability to capture sentential context and ability to train

with a moderate amount of data. I use all transcripts from the Fisher dataset as training,

which contain spontaneous dyadic conversations like ATAROS. I train a model with hidden

dimension 1024 and embedding dimension 50, using gradient clipping with a maximum

norm of 1 for 50 epochs with batch size 128. I use cross-entropy loss with a weighted mean

reduction as the training objective. A learning rate scheduler decreases the learning rate

every 10 epochs, with multiplicative factor γ = 0.1. Once trained, utterance transcripts

can be passed to the model, and it will output associated probabilities for all words, given

the prior words in the utterance. To evaluate word probabilities, I split transcripts into

utterances, and use the basic English tokenizer in pytorch (breaking words on white space

and punctuation) [84].

For the purposes of this work, the surprisal of a sentence with word sequence W is defined

as the negative average log probability of the content words in the sequence, as produced by

passing the entire sentence through the language model. Let Wc be the set of content words

in W . Equation 6.1 computes the surprisal of W .

s (W ) = −
∑

w∈Wc
log2 (p (w))
|Wc|

(6.1)

6.3.3 Repulsive Force Ratio

Following the description of gravitational force in the vowel space presented in [119, 122, 123],

I describe the expansion of the vowel space with respect to the repulsive force of vowels

originating from each speaker individually. In order to compare the expansion of individual
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vowels rather than the vowel space in general, I modify the definition of repulsive force from

[123], normalizing the repulsive force by the average repulsive force of all instances of the

same vowel.

Let l be the vowel index l ∈ {2, U, aI, u, oU, æ, E, i, A, I, Ç, O, eI, aU, OI} and for each vowel

l (inscribed as a superscript), i is a single instance of the vowel i = 1, . . . , nl (inscribed as

subscript), where nl is the number of vowels with label l. A vowel instance vli is represented

by the mean F1 and F2 across its duration. Let d
(
vli, v

k
j

)
be the Euclidean distance between

vowels vli and vkj in the F1xF2 plane.

The repulsive force r(vli) for the vowel instance vli is the sum of the inverse square distances

between vli and all other vowel instances with a different label:

r
(
vli
)
=

∑
j:vkj , k ̸=l

1

d
(
vli, v

k
j

)2 (6.2)

The normalizing factor of repulsive force for vowel vli is the average repulsive force for all

vowels with the same label:

r
(
vli
)
=

r
(
vli
)

1
nl

∑
j:vkj , k=l r

(
vlj
) (6.3)

Note that the repulsive force of a vowel becomes greater when it is nearer in the vowel

space to other vowels of the same type. Thus, a smaller average repulsive force across vowels

indicates an expanded vowel space.

6.3.4 Duration

I use timings from phone-level transcriptions force-aligned using the Penn Phonetics Lab

Forced Aligner [P2FA, 120] to compute vowel duration. Where lexical items in ATAROS were

out-of-vocabulary for P2FA, they were manually added to the dictionary. For comparability,

I analyze all vowels that were included according to the criteria of the repulsive force ratio.
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6.3.5 Statistical Comparison

I use Wood’s Generalized Additive Modeling (GAM) [124] as implemented in the mgcv pack-

age [125] in R (using Gamma model family) to model the relationships between surprisal

and stance and the two measures of vowel hyper-articulation. GAMs are a non-parametric

modeling method that can model non-linear relationships between data types. They have

been used in similar studies of acoustic distinctiveness such as Matt Kelley’s dissertation

[126] (the author used the variant Generalized Additive Mixed Model (GAMM) with mixed

effects to study the impact of various acoustic measures on listener response times).

In addition to fixed effects of stance and surprisal (smoothed via thin plate regression

splines [127]) variables, I include smoothed interaction terms between stance and surprisal.

I fit separate models for strength and polarity (both including surprisal and the respec-

tive interaction term).4 Neutral polarity, zero stance strength are treated as the intercept

conditions.

6.4 Results

Figure 6.1 shows the distributions of the repulsive force ratio and vowel duration for the

vowels of interest. Both distributions are right-skewed with long right tails, which is expected

for these features.

I report significance in tables using the following notation: ∗ ∗ ∗ = p < 0.001, ∗∗ = p <

0.01, ∗ = p < 0.05. Significance of parametric coefficients is derived from the Bayesian

estimated covariance matrix of the parameter estimators. For smoothed parameters, the

effective degrees of freedom (EDF) estimates the degree polynomial needed to fit each term,

and the associated significance is derived from ANOVA tests.

Tables 6.2 and 6.3 summarize the estimated linear coefficients of stance strength and

surprisal EDF when modeling repulsive force ratio and duration. The coefficients indicate

4In the syntax of mgcv, the formula that defines the model is gam(repulsive
force|distance) ∼ s(surprisal) + stance {polarity|strength} + s(surprisal, by = stance
{polarity|strength})
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the impact of the stance conditions on the predicted value (e.g., vowel duration). Interaction

terms are abbreviated with the syntax surprisal.x, where x is the stance condition. For

example, surprisal.moderate is the interaction between surprisal and moderate stance

strength. I compare models which include (right) and exclude (left) the interaction term.5

Tables 6.4 and 6.5 similarly report the coefficients and EDF of stance polarity-based

models of repulsive force and duration, respectively.

Figure 6.1: Kernel density estimates of repulsive force ratio (blue) and duration (red).

6.5 Discussion

The statistical evidence from the GAMs supports previous findings that both stance-taking

and lexical surprisal are sources of hyper-articulation, measured as repulsive force and dura-

tion of vowels.

Models without interaction terms showed highly significant effects for stronger stance

strength and surprisal, for both repulsive force ratio and duration. Consistent with hyper-

articulation, increasing stance reduces the repulsive force ratio and increases duration. Non-

zero levels of strength, as well as non-neutral polarity, reduced the repulsive force and ex-

5In notation, s(surprisal, by=stance polarity|strength)
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Table 6.2: Summary of GAM linear stance strength coefficients and surprisal EDF for pre-
dicting the repulsive force ratio, with and without interacting effects. Stance strength 0 is
intercept. Only significant interactions included: surprisal.x, where x is stance strength.

Prediction Variables − Interactions + Interactions
Est. Signif. Est. Signif.

0 1.011 *** 1.011 ***
Coeff 1 -0.004 ns -0.004 ns

2 -0.028 *** -0.028 ***
3 -0.058 *** -0.56 **
surprisal 6.6 *** 8.3 ***

EDF surprisal.moderate n/a 7.1 *
surprisal.strong n/a 3.4 **

Table 6.3: Summary of GAM linear stance strength coefficients and surprisal EDF for pre-
dicting duration, with and without interacting effects. Stance strength 0 is intercept. No
interaction terms were significant.

Prediction Variables - Interactions + Interactions
Est. Signif. Est. Signif.

0 8.43 *** 8.42 ***
Coeff 1 0.52 *** 0.54 ***

2 1.55 *** 1.54 ***
3 1.20 *** 1.16 ns

EDF surprisal 8.8 *** 7.8 ns

Table 6.4: Summary of GAM linear stance polarity coefficients and surprisal EDF for pre-
dicting the repulsive force ratio, with and without interacting effects. Stance polarity neutral
(0) is intercept. No interaction terms were significant.

Prediction Variables - Interactions + Interactions
Est. Signif. Est. Signif.

0 1.000 *** 1.011 ***
Coeff - -0.023 *** -0.022 ***

+ -0.005 * -0.005 *
EDF surprisal 6.4 *** 1.7 ns
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Table 6.5: Summary of GAM linear stance polarity coefficients and surprisal EDF for predict-
ing duration, with and without interacting effects. Stance polarity neutral (0) is intercept.
No interaction terms were significant.

Prediction Variables - Interactions + Interactions
Est. Signif. Est. Signif.

0 9.33 *** 9.34 ***
Coeff - 0.16 ns 0.10 ns

+ -0.88 *** -0.84 ***
EDF surprisal 8.8 *** 8.6 **

panded the vowel space. When interaction terms are included in models with stance strength,

they are only significant between surprisal and moderate and strong stance (see Table 6.2).

Use of interaction terms may have reduced the significance of other terms where there are

interactions, i.e. between surprisal and strong stance. For duration, no interaction terms are

significant, their inclusion forces overfitting and reduces significance of strong stance which

is associated with fewer instances.

Stance polarity was also a significant predictor of repulsive force and duration, with some

caveats. Negative polarity was not significant for duration (see Table 6.5). Surprisal was

only significant when interaction terms were excluded in predicting repulsive force, and

significance was weaker with interactions in the duration model. This is also likely due to

overfitting.

An unexpected finding is the significant interactions between surprisal and stronger levels

of stance, but a lack of significant interaction for any kind of stance polarity. One issue in

understanding this discrepancy is the interdependence between stance and polarity: a spurt

cannot have polarity without positive stance strength, and the distribution of negative and

positive polarity is not equal within strength level. Further study is needed to understand

how this two-part conception of stance effects the significance of the results.
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6.5.1 Limitations and Future Work

The effects presented in this chapter represent a specific speech style at one point in time

(Pacific Northwest English speakers in the early 21st century). It is unknown whether the

interactions observed in this data would hold in other linguistic contexts, such as in languages

other than English, conversations between familiar interlocutors, etc.

The differing findings for the two hyper-articulation measures motivates further work on

appropriate acoustic measures of hyper-articulation in this context. A limitation of using

only the ATAROS dataset is that the stance-taking tends to be on the weaker side (see 6.1).

The artificial nature of this dataset is unlikely to be representative of speech behavior in the

wild, especially because of the unusual nature of the lexicon that the tasks require. It may

be the case that the kinds of stance elicited in a laboratory environment like the ATAROS

collection design are too weak to see large hyper-articulation effects.

One concern with respect to the vowel duration is that vowel identity is not controlled for

in this description of duration. Separate pilot experiments with identity-normalized vowel

duration did not show any noticeable differences compared to the un-normalized duration.

A more fruitful venue for re-testing the impact of surprisal and stance on vowel duration

would be to check the alignments output by P2FA; while including only averaged values for

vowels mitigates some of the more fine-grained alignment issues that can occur with forced

alignment, it’s still possible that alignment errors contributed to the fewer significant findings

with respect to duration.

6.6 Conclusion

I have shown that stance-taking and lexical surprisal are significant mediators of changes in

articulation, particularly in the gravitational force of the vowel space. Lexical surprisal and

stance-taking were also found to interactively influence repulsive force in the vowel space.

Both information streams impacted vowel duration, however I did not find definitive evidence

towards an interaction with respect to duration. The competition induced onto the acoustic
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signal from the various simultaneous sources of linguistic information is a manifestation of

the complexity of information expression through language.
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Chapter 7

CONCLUSION

I have demonstrated through a series of human- and machine-facing experiments the

wide range of behaviors and applications of speech prosody in the landscape of linguistic

technology. Surprisal and stance, both instigators of prosodic variation, have been shown

to significantly interact with one another. The timing of discourse, intimately related to

prosodic timing, was found to vary significantly with respect to speaker stance as well.

While the results of experiments using prosodic features for existing speech processing

tasks do not suggest across-the-board benefits to modeling prosody, I believe their strength

is in exposing the types of data where including prosodic information is most likely to show a

benefit. Incorporating prosodic cues into computational models, whether implicitly or explic-

itly, enables speech understanding that would not be possible with words alone. In looking

toward the future of artificial intelligence, the complex social and interpersonal information

transfer facilitated by language can only be understood by machines when the full context

of speech, including all linguistic modalities, are taken into account. The acoustics I’ve used

to represent prosody (pitch, duration, and intensity) are a small part of that.

A challenge of researching prosody in the computational space is the ideological divide

between how linguists conceive of prosody and its utility, and how prosodic information

is utilized in technological applications. The linguistic conception of prosody takes many

forms and interpretations, based in understanding specific instances of speech and local

changes to the acoustics therein. In contrast, the black-box approach of the state-of-the-art

in computational speech understandings prevents practitioners from understanding where

prosody is being used in speech tasks, and to what extent. I believe bridging this divide will

enable the two-fold goal of understanding how prosody functions in natural speech, and how
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to computationally represent those mechanisms.
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